Distortion Diagnostics for Covariate-adjusted Regression: Graphical Techniques Based on Local Linear Modeling

نویسندگان

  • Danh V. Nguyen
  • Damla Şentürk
چکیده

Linear regression models are often useful tools for exploring the relationship between a response and a set of explanatory (predictor) variables. When both the observed response and the predictor variables are contaminated/distorted by unknown functions of an observable confounder, inferring the underlying relationship between the latent (unobserved) variables is more challenging. Recently, Şentürk and Müller (2005) proposed the method of covariate-adjusted regression (CAR) analysis for this distorted data setting. In this paper, we describe graphical techniques for assessing departures from or violations of specific assumptions regarding the type and form of the data distortion. The type of data distortion consists of multiplicative, additive or no-distortion. The form of the distortion encompasses a class of general smooth distorting functions. However, common confounding adjustment methods in regression analysis implicitly make distortion assumptions, such as assuming additive or multiplicative linear distortions. We illustrate graphical detection of departures from such assumptions on the distortion. The graphical diagnostic techniques are illustrated with numerical and real data examples. The proposed graphical assessment of distortion assumptions is feasible due to the CAR estimation method, which utilizes a local regression technique to estimate a set of transformed distorting functions (Şentürk and Nguyen, 2006).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals

Residuals have long been used as the basis for graphical and numerical examination of the adequacy of regression models. Conventional residual analysis based on plotting raw residuals or their smoothed versions is highly subjective, whereas most goodness-offit tests provide little information about the nature of model inadequacy. In this paper, new model-checking techniques of Lin et al. (1993,...

متن کامل

Proportional Hazards Modeling of Time-Dependent Covariates Using Linear Regression: A Case Study - Reliability, IEEE Transactions on

Conclusions In the proportional hazards model the effect of a covariate is assumed to be time-invariant. In this paper a graphical method based on a linear regression model (LRM) is used to test whether this assumption is realistic. The variation in the effect of a covariate is plotted against time. The slope of this plot indicates the nature of the influence of a covariate over time. A covaria...

متن کامل

Application of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters

The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...

متن کامل

Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.

Motivated by analysis of genetical genomics data, we introduce a sparse high dimensional multivariate regression model for studying conditional independence relationships among a set of genes adjusting for possible genetic effects. The precision matrix in the model specifies a covariate-adjusted Gaussian graph, which presents the conditional dependence structure of gene expression after the con...

متن کامل

Firework Plots for Evaluating the Impact of Outliers and Influential Observations in Generalized Linear Models

Outliers can distort many measures in data analysis and statistical modeling, and influential points can have disproportionate impact on the estimated values of model parameters. Jang and Anderson-Cook (2013) proposed a new set of graphical summaries, called firework plots, as simple tools for evaluating the impact of outliers and influential points in regression. Variations of the plots focus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007